Bidirectional Whitham Equations as Models of Waves on Shallow Water

نویسنده

  • John D. Carter
چکیده

Hammack & Segur [1] conducted a series of surface water-wave experiments in which the evolution of long waves of depression was measured and studied. This present work compares time series from these experiments with predictions from numerical simulations of the KdV, Serre, and several unidirectional and bidirectional Whitham-type equations. These comparisons show that accurate predictions come from models that contain an accurate reproduction of the Euler phase velocity, sufficient nonlinearity, and surface tension effects. The focus is to compare the quality of several bidirectional Whitham models. Most interestingly, the comparisons show that the bidirectional Whitham equations can provide predictions that are more accurate than the unidirectional models even though the experiments were essentially one dimensional.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Modulational Instabilities in Full-dispersion Shallow Water Models

We study the modulational instability of a shallow water model, with and without surface tension, which generalizes the Whitham equation to include bi-directional propagation. Without surface tension, the small amplitude periodic traveling waves are modulationally unstable if their wave number is greater than a critical wave number predicting a Benjamin-Feir type instability and the result qual...

متن کامل

A numerical study of the Whitham equation as a model for steady surface water waves

The object of this article is the comparison of numerical solutions of the so-called Whitham equation describing wave motion at the surface of a perfect fluid to numerical approximations of solutions of the full Euler free-surface water-wave problem. The Whitham equation ηt + 3 2 c0 h0 ηηx +Kh0∗ ηx = 0 was proposed by Whitham [33] as an alternative to the KdV equation for the description of sur...

متن کامل

Analytic model for a frictional shallow-water undular bore

We use the integrable Kaup-Boussinesq shallow water system, modified by a small viscous term, to model the formation of an undular bore with a steady profile. The description is made in terms of the corresponding integrable Whitham system, also appropriately modified by friction. This is derived in Riemann variables using a modified finite-gap integration technique for the AKNS scheme. The Whit...

متن کامل

Approximate Traveling Wave Solutions of Coupled Whitham-Broer-Kaup Shallow Water Equations by Homotopy Analysis Method

The homotopy analysis method HAM is applied to obtain the approximate traveling wave solutions of the coupled Whitham-Broer-Kaup WBK equations in shallow water. Comparisons are made between the results of the proposed method and exact solutions. The results show that the homotopy analysis method is an attractive method in solving the systems of nonlinear partial differential equations.

متن کامل

Exact and Explicit Solutions of Whitham-Broer-Kaup Equations in Shallow Water

In this paper, a simple direct method is presented to find equivalence transformation of a nonlinear WhithamBroer-Kaup equations. Applying this equivalence transformation, we can obtain the symmetry group theorem of the Whitham-Broer-Kaup equations and then derive series of new exact and explicit solutions of the Whitham-Broer-Kaup equations according to solutions of the previous references.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017